LIGO Update and Future Prospects #### Peter Shawhan (University of Maryland / JSI) Astronomy and Astrophysics Advisory Committee February 25, 2016 ### Summer 2015: Out of the "Dark Ages" Focus: Transition the LIGO gravitational wave detectors back to observing operations after a 5-year shutdown to carry out the Advanced LIGO upgrade project ### Advanced LIGO Optical Layout ### LIGO GW Strain Sensitivity for O1 ### Scrambling in September Both LIGO detectors were operating pretty well by late August, when Engineering Run 8 began Observing run O1 was scheduled to begin on Sept 14 at 15:00 UTC Still lots of details to transition to observing: Calibration studies Real-time h(t) data stream production Hardware signal injection tests Low-latency data analysis automation and testing Event candidate alerts and rapid response procedures Environmental noise coupling studies On Sept 11, start of O1 was delayed to Sept 18 Calibration stable and well-measured by Sept 12, still working on some of the other things... ### Event Candidate on Sept. 14! #### Identified within minutes by the Coherent WaveBurst algorithm #### The Actual Waveforms ### Looks like a Binary Black Hole Merger! #### Matches well to BBH template with same filtering ### Could it be a blind injection? #### LIGO and Virgo have done blind injections in the past A few people authorized to secretly insert a signal into the detectors Truly end-to-end test of the detectors, data analysis, and interpretation Including the "Equinox event" in Sept 2007 and "Big Dog" in Sept 2010 A blind injection exercise was authorized for O1 But it had not started as of September 14! ### Alerted observing partners Had made prior arrangements with 62 teams of astronomers using a wide variety of instruments (gamma-ray, X-ray, optical, IR, radio) Developed software to rapidly select promising event candidates and send alerts over a private channel of the GCN But that software wasn't fully set up yet! Manually prepared and sent out an alert, ~44 hours after the event Many observations were made, and are being reported separately by the observers Fermi/GBM team have reported a weak *potential* counterpart (arXiv:1602.03920) From https://dcc.ligo.org/P1500227/public #### Could it be an instrumental noise artifact? #### Would have to have been (nearly) coincident at the two sites #### There are glitches in the data, but not like The Event Some suppressed with data quality cuts on monitoring channels Still have "blip transients" with unknown origin Also checked for possible sources of correlated noise in the two detectors We can estimate the background (from random false coincidences) by analyzing time-shifted data - \rightarrow We calculated that we would need 16 days of data (livetime) to check for background similar to the The Event at the 5 σ level - → Froze detector configuration, curtailed non-critical activities ### Final Analysis – Generic Transient Search Data set: Sept 12 to Oct 20 Generic transient search ### Final Analysis – Binary Coalescence Search Data set: Sept 12 to Oct 20 Binary coalescence search ### Papers About GW150914 Available at https://papers.ligo.org/ ### Properties of GW150914 # From Bayesian parameter estimation, using waveform models which include black hole spin, but no orbital precession #### Masses: Abbott et al., arXiv:1602.03840 Final BH mass: $62 \pm 4 M_{\odot}$ Energy radiated: $3.0 \pm 0.5 M_{\odot}c^2$ Peak power $\sim 200 \, M_{\odot} c^2/\mathrm{s}$! #### Luminosity distance (from absolute amplitude of signal): (~1.3 billion light-years!) #### \rightarrow Redshift $z \approx 0.09$ Frequency shift of signal is taken into account when inferring masses ### Black Hole Spins Express as a fraction of the maximum spin permitted by GR: $\frac{Gm^2}{c}$ Spins of initial black holes are hardly constrained Heavier BH: spin < 0.7 Lighter BH: spin < 0.9 Spin of final black hole: $0.67^{+0.05}_{-0.07}$ ### **Testing General Relativity** We examined the detailed waveform of GW150914 in several ways to see whether there is any deviation from the GR predictions #### Inspiral / merger / ringdown consistency test Compare estimates of mass and spin from before vs. after merger Pure ringdown of final BH? Not clear in data, but consistent Test for deviations from post-Newtonian expansion of waveform Place upper limit on graviton mass: $m_g < 1.2 \times 10^{-22} \ {\rm eV}/c^2$ Abbott et al., arXiv:1602.03841 ### **Astrophysical Implications** # GW150914 proves that there are black hole binaries out there, orbiting closely enough to merge, and *heavy!* For comparison, reliable BH masses in X-ray binaries are typically ${\sim}10~M_{\odot}$ #### We presume that each of our BHs formed directly from a star → Low metallicity is required to get such large masses #### The BBH system could have been formed either by: A massive binary star system with sequential core-collapses; or Dynamical formation of a binary from two BHs in a dense star cluster Can't tell *when* the binary was formed, but we can say that the "kicks" of core-collapse supernova remnants can't be very large #### Also can estimate volume rate of mergers Broad range, depending on assumptions about population: (2 to 400) per year per Gpc³ ### What's Next Finish analyzing the rest of the O1 data Complete our full suite of searches for various GW signals Prepare for the O2 run starting this summer Should be twice as long, hopefully with somewhat better sensitivity ### LIGO / Virgo Observing Run Schedule #### Projection made in 2013 (arXiv:1304.0670) still seems on target Was based on guesses at how fast commissioning would progress New version published as http://relativity.livingreviews.org/Articles/Irr-2016-1/ | | Estimated | $E_{\rm GW} =$ | $10^{-2} M_{\odot} c^2$ | | | Number | |---------------|------------|-------------------|-------------------------|-----------------|----------|------------| | | Run | Burst Range (Mpc) | | BNS Range (Mpc) | | of BNS | | Epoch | Duration | LIGO | Virgo | LIGO | Virgo | Detections | | 2015 | 3 months | 40 - 60 | _ | 40 - 80 | _ | 0.0004 - 3 | | 2016-17 | 6 months | 60 - 75 | 20 - 40 | 80 - 120 | 20 - 60 | 0.006 - 20 | | 2017-18 | 9 months | 75 - 90 | 40 - 50 | 120 - 170 | 60 - 85 | 0.04 - 100 | | 2019+ | (per year) | 105 | 40 - 80 | 200 | 65 - 130 | 0.2 - 200 | | 2022+ (India) | (per year) | 105 | 80 | 200 | 130 | 0.4 - 400 | O2 run may begin by late summer 2016 Virgo may join around the end of 2016 (during the O2 run) ### Closing Remarks Decades of patient work and faith finally paid off! We were lucky that our first detected event was so spectacular The outpouring of interest from scientists and the public has been wonderful We're now finishing the analysis of O1 and gearing up for O2 – very soon! How many more BBH mergers will we detect? Will we detect NS-NS coalescence events too? How many? What about other types of signals? ## Backup slides ### The Wide Spectrum of Gravitational Waves $\sim 10^{-17} \, \text{Hz}$ $\sim 10^{-8} \text{ Hz}$ $\sim 10^{-2} \text{ Hz}$ ~ 100 Hz Primordial GWs from inflation Grav. radiation driven Binary Inspiral + Merger Supermassive BHs Massive BHs, extreme mass ratios Neutron stars, stellar-mass BHs Ultra-compact Galactic binaries Spinning NSs Stellar core collapse B-mode polarization patterns in cosmic microwave background Planck, BICEP/Keck, ABS, POLARBEAR, SPTpol, SPIDER, ... **BICEP2** Pulsar Timing Array (PTA) campaigns **David Champion** NANOGrav, European PTA, Parkes PTA Interferometry between spacecraft AEI/MM/exozet eLISA, DECIGO Ground-based interferometry LIGO Laboratory LIGO, GEO 600, Virgo, KAGRA ### Short Gamma-ray Bursts = Mergers? #### Compact binary mergers are thought to cause most short GRBs Strong evidence from host galaxy types and typical offsets [Fong & Berger, ApJ 776, 18] Could be NS-NS or NS-BH, with post-merger accretion producing a jet #### Beamed gamma-ray emission → many more mergers than GRBs Some opening angles measured, e.g. $16 \pm 10^{\circ}$ [Fong et al., arXiv:1509.02922] Also may get detectable isotropic emission from nearby GRBs, such as infrared "kilonova" peak after several days, [e.g. Barnes & Kasen, ApJ 775, 18] seen for GRB 130603B? [Berger et al., ApJ 765, 121; Tanvir et al., Nature 500, 547] Possible to detect X-ray afterglow from a somewhat off-axis nearby GRB? #### **Exciting possibility to confirm the merger-GRB association!** ### LIGO Detector Noise Components From Abbott et al., arXiv:1602.03838 ### **Effect of Data Quality Cuts** Figure 7: The impact of data-quality vetoes on the CBC background trigger distribution for (a) LIGO-Hanford and (b) LIGO-Livingston. The single-detector χ^2 -weighted SNR of GW150914 is indicated for each detector with a dashed line (19.7 for Hanford and 13.3 for Livingston), and for event LVT151012 with a dot-dashed line (6.9 for Hanford and 6.7 for Livingston). From Abbott et al., arXiv:1602.03844 # Advanced GW Detector Network: Under Construction → Operating #### Possible Gamma-ray Counterpart?? A weak signal was identified in data from Fermi/GBM about 0.4 second after the time of GW150914 Connaughton et al., arXiv:1602.03920 #### Post-trials false alarm prob ~ 0.0022 GBM detectors at 150914 09:50:45.797 +1.024s